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This paper shows thatN-degree-of-freedom generic unstable potential systems, whose potential matrices have an

evennumber of negative eigenvalues andwhichare gyroscopically stabilized, canalwaysbemade exponentially stable

through the use of an uncountably infinite number of indefinite damping matrices. A step-by-step methodology is

provided for gyroscopic stabilization of such unstable potential systems that guarantees their exponential stability

through the simultaneous use of positive and negative velocity feedback. Dissipative damping and positive velocity

feedback are shown to constructively cooperate to bring about such stability. In contrast to the well-known Kelvin–

Tait–Chetaev paradigm, which states that gyroscopically stabilized unstable potential systems are always made

unstable in the presence of the slightest dissipation of energy, the paper points to a newparadigm,which states that the

proper simultaneous dissipation and infusion of energy into generic gyroscopically stabilized unstable potential

systems guarantees their exponential stability. What is meant by “generic” is explicitly stated, and such generic

systems are shown to include most real-life N-degree-of-freedom unstable potential systems.

Nomenclature

ai = distinct numbers in a set of 2n real numbers
ci = positive diagonal elements of DDiss

s

D, ~D, DI
i

= indefinite damping matrices

DDiss
s = positive definite damping matrix

di, �di = positive diagonal element of submatrix DI
i

G, ~G, Ĝ, �GGi; �Gi
= skew-symmetric matrices

gi; �gi = element of skew-symmetric submatrices

Gi; �Gi

Ir = number of pairs with identical negative
entries in a pairing

~K, K̂ = unstable potential matrix

Kp−, Kp� = row vector of negative and positive eigen-
values of K̂

�Kp− = row vector of distinct negative eigenvalues
of K̂

~M = positive definite mass matrix

mi, ml = multiplicity of negative eigenvalues of K̂
N = degrees of freedom of unstable potential

system
2n = number of negative eigenvalues of ~K, K̂
q; x; y = n-by-1 column vectors
r = ml − n > 0, minimum number of pairs that

have identical negative entries in any pairing
ri, �ri = ordered quadruple of gyroscopic potential

subsystem
si, �si = ordered sextuple of damped gyroscopic

potential subsystem
T,W = real N-by-N matrices
ui = 2-by-1 column vector
−α;−αi;− �αi = negative elements of indefinite damping

submatrices

δ; δi, �δi = nonzero real number

Λ, Λi, Λs = diagonal matrices
−λi = negative eigenvalue of K̂

I. Introduction

I THAS long been known that unstable linear potential systems that
have an even number of degrees-of-freedom can be stabilized

using gyroscopic forces. The introduction of dissipative damping in
such systems, however, makes them unstable. This seminal result
obtainedby the jointworkof Peter Tait andLordKelvin began in 1861
and culminated in 1867 [1]. Their book, titled A Treatise on Natural

Philosophy, develops this idea fromphysical considerations, and their
result was mathematically proved in the 1950s by the mathematical
physicistChetaev [2]. Though nonintuitive (because linear dissipative
damping extracts energy from systems and in most systems therefore
aids their stability), this result, which is known today as the celebrated
Kelvin–Tait–Chetaev (KTC) theorem, is an important cornerstone of
the theory of linear stability [3,4]. It is of great practical value because
it correctly predicts the behavior of gyroscopically stabilized unstable
systems in which the damping matrix is positive definite. It has
been handed down to the scientific, mathematical, and engineering
communities since more than a hundred and fifty years and has
become one of the important paradigms in stability theory.
The KTC theorem deals solely with systems subjected to three

qualitatively different forces: conservative positional forces that
make the system unstable, called unstable potential systems for short;
gyroscopic forces; and linear-in-velocity damping forces. This paper
too deals solely with systems subjected to these three forces,
but instead of the linear-in-velocity damping forces being dissipative
and described by positive definite damping matrices as in the KTC
theorem, it considers linear-in-velocity damping forces that are
indefinite and described by indefinite damping matrices.
In contrast to theKTC result, recentwork on this subject has shown

that gyroscopically stabilized unstable potential systems can bemade
stable and even exponentially stable, through the introduction of
linear damping by way of indefinite damping matrices [5]. To prove
this general principle, in Ref. [5] two-degree-of-freedom gyroscopi-
cally stabilized systems are considered. It is shown that when such
(generic) unstable potential systems are gyroscopically stabilized,
they can always be made not just stable but exponentially stable by
the introduction of a suitable indefinite dampingmatrix. The practical
implementation of such damping involves the somewhat nonintuitive
simultaneous use of both positive and negative velocity feedback.
These feedbacks constructively interact to bestow exponential sta-
bility on the gyroscopically stabilized system. A continuous con-
nected region in the space of indefinite damping matrices is shown to
exist and is explicitly delineated [5]. All indefinite damping matrices
that lie within this region are shown to make the gyroscopically
stabilized system exponentially stable, and the finite stability boun-
dary is explicitly obtained. Although sufficient to prove the basic
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concept underlying the use of indefinite damping matrices to make
gyroscopically stabilized systems exponentially stable, two-degree-
of-freedom systems rarely arise in practical engineered systems and
in nature, except when strong symmetries exist or when special
constraints are enforced. This paper shows how (generic) multi-
degree-of-freedom (MDOF) systems with unstable potential matri-
ces can be gyroscopically stabilized and always made exponentially
stable through the use of linear-in-velocity indefinite damping. The
results are therefore applicable to real-life unstable potential systems.
They provide a general methodology for such systems guaranteeing
exponential stability.
There is little literature on the use of indefinite damping matrices in

gyroscopically stabilized unstable potential systemswhere the aim is to
make the gyroscopically stabilized system exponentially stable. Mer-
kin’s book [6] dealswithan attempt touse an indefinite dampingmatrix
for a gyroscopically stabilized monorail car. Merkin shows that by
increasing the gyroscopic stabilization force, stability might be pos-
sible provided that certain conditions are satisfied. However, there has
been a long-term interest from the aerospace andmechanical engineer-
ing communities in gyroscopic systems subjected to dissipative damp-
ing [6–10]. In Refs. [11–15] Kirillov takes a different approach and
dealswith gyroscopic stabilization of nonconservative systems.One of
the central analytical themes in these references is the consideration of
first approximations of perturbed eigenvalues around, what the author
calls, exceptional points where the real part of the eigenvalues is zero.
Using this perturbational approach, asymptotic stability regions using
indefinite damping matrices are obtained as the circulatory contribu-
tions to the nonconservative forces become small and/or tend to zero.
The present paper, however, does not deal with any perturbation
approaches, orwith nonconservative forces since, asmentionedbefore,
such forces do not enter the KTC paradigm.
Indefinite damping matrices entail the use of positive velocity

feedback, and such feedback has been shown to be useful in certain
dynamic systems [16,17]; it is these papers that have inspired the
present paper and Ref. [5].
We begin with theN-degree-of-freedom unstable potential system

described by

~M �q� ~Kq � 0 (1)

where q ∈ RN ; ~M is a real, constant, positive definite matrix mass

matrix; and the potential matrix ~K is a real, constant, symmetric stiff-

ness matrix. We assume throughout this paper that ~K has 2n, n ≥ 1,
negative eigenvalues and N − 2n ≥ 0 positive eigenvalues. The 2n

negative eigenvalues of the potential matrix ~K represent the unstable
modes of vibration of the physical system modeled by Eq. (1).
Using the transformation q�t� � ~M−1∕2y�t� in Eq. (1) and pre-

multiplying both sides by ~M−1∕2, this equation becomes

�y� K̂y � 0 (2)

where K̂ � ~M−1∕2 ~K ~M−1∕2 is a symmetric matrix. Since K̂ is sym-

metric there is a real orthogonalmatrixT such thatTTK̂T � Λ, where
Λ is a diagonalmatrix that has the eigenvalues of ~K along its diagonal.
Using the transformation y�t� � Tx�t� in Eq. (2) and premultiplying

both sides by TT, we get the relation

�x� Λx � 0 (3)

which describes the dynamics of the unstable N-degree-of-freedom
potential system. Equation (3) is clearly equivalent to Eq. (1), and it is
Eq. (3) that we will be using in this paper.
What is important for what follows is that the ith column, ti, of the

matrix T is an eigenvector of the matrix K̂ that corresponds to the
eigenvalue λi that sits in the ith row of the diagonal matrix Λ. Hence
by rearranging the order in which the orthonormal columns of T are
sequentially listed in the matrix T, the eigenvalues that lie along the
diagonal of the matrixΛ in Eq. (3) can be placed in any desired order.
We initially consider a row vector,Kp, containing the eigenvalues of

the potential system given by

Kp � �Kp−; Kp�� �
"
−λ1;−λ2; : : : ;−λ2n|�������������{z�������������}

Kp−
;
λ2n�1; : : : ; λN|��������{z��������}

Kp�

#
;

with λi > 0; i � 1; 2; : : : ; N (4)

and label the eigenvalues so that −λ1 ≤ −λ2 ≤ · · ·≤ −λ2n <

λ2n�1 ≤ · · ·≤ λN . The row vector Kp− ≔ �−λ1;−λ2; : : : ;−λ2n� con-
tains the 2n negative eigenvalues of the potential matrix K, and the

row vector Kp� ≔ �λ2n�1; λ2n�2; : : : ; λN � contains the remaining

positive eigenvalues of K. With no loss of generality, we then have

Λ � diag�Kp� (5)

in Eq. (3). We show later on how to order the negative eigenvalues

contained in the row vector, Kp−; for now, we label the negative

eigenvalues in ascending order. Note that we assume that zero is not

an eigenvalue of K̂� ~K�.
Remark 1: That the eigenvalues along the diagonal of the matrixΛ

of the (unstable) potential system can be placed in any desired order

appears to be obvious. Yet, it will turn out to be of considerable

importance later on when we relax the condition that the negative

eigenvalues be placed in ascending order in Kp− (see Remark 5).

Herewe only note that with no loss of generality, the elements ofKp−
can be placed in any order in Eqs. (3) and (5). □

Weassume throughout this paper that the unstable potential system

described by Eq. (3) [or equivalently the system described by Eq. (1)]

is subjected to suitable gyroscopic forces described by a gyroscopic,

skew-symmetric, matrix G so that it is stabilized. A simple way to

ensure this for MDOF systems is provided later on in this paper. The

motion of this undamped gyroscopically stabilized system is then

given by

�x�G _x� Λx � 0 (6)

The KCT paradigm informs us that the minutest dissipative damp-

ing added to thegyroscopically stabilized systemdescribed byEq. (6)

makes it unstable.
Remark 2: To make Eq. (6) more explicit, we illustrate it for an

unstable six-degree-of-freedom potential system in which the 6-by-6

matrix K̂� ~K� has four negative eigenvalues (n � 2). The equation, in
expanded form, is

whereKp− � �−λ1;−λ2;−λ3;−λ4�; Kp� � �λ5; λ6�, and Ĝ is a skew-

symmetric matrix. Since λ5; λ6 > 0, the last two degrees of freedom,

x5 and x6, are marginally stable and do not require any gyroscopic

stabilization. We further express the matrix Ĝ as a block-diagonal

matrix so that Ĝ � BLKdiag�G1; G2�, where G1 and G2 are each

2-by-2 skew-symmetric matrices. We use the notation u1�t��
�x1�t�;x2�t��T , u2�t���x3�t�;x4�t��T , v�t�� �x5�t�;x6�t��T , Λ1 �
diag�−λ1;−λ2�;Λ2 � diag�−λ3;−λ4�, and Λs � diag�λ5; λ6�. The
subscript s denotes the stable part of the potential system. Thus,

Λ � BLKdiag�Λ1;Λ2;Λs�, in which Λi < 0; i � 1; 2; andΛs > 0.
Equation (7) thus comprises the three subsystems
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�ui �Gi _ui � Λiui � 0; Λi < 0; i � 1; 2; and;

�v � Λsv � 0; Λs > 0 (8)

The coordinate v�t� is marginally stable; the coordinates u1�t� and
u2�t� can bemademarginally stable through an appropriate choice of
the matrices G1 and G2. □

Analogous to the six-degree-of-freedom system considered above,

when the N-by-N matrix K̂� ~K� has 2n ≤ N negative eigenvalues the
N-by-NmatrixG in Eq. (6)will again be block diagonal,made up of a

2n-by-2n skew-symmetric block, Ĝ, followed by a lower �N − 2n�-
by-�N − 2n� zero diagonal block. For gyroscopic stabilization, we

then consider Ĝ � BLKdiag�G1; G2; : : : ; Gn�, in whichGi; 1 ≤ i ≤
n, are each 2-by-2 skew-symmetric matrices. Similarly, the N-by-N
diagonal matrix Λ is considered block diagonal; its upper block

contains the 2n negative eigenvalues of K̂ given inKp−, and its lower

block contains the remaining �N − 2n� positive eigenvalues. Thus,
Λ � BLKdiag�Λ1;Λ2; : : : ;Λn;Λs�, in which Λi < 0; 1 ≤ i ≤ n, are
2-by-2 diagonal matrices each of which contains the negative eigen-

values of K̂, andΛs > 0 is an �N − 2n�-by-�N − 2n� diagonal matrix
containing its positive eigenvalues. The last �N − 2n� degrees of
freedom of the system are all marginally stable.
The aim of the paper can now be precisely stated. It is known that

for a given generic unstable N-degree-of-freedom potential system
described by Eq. (3) that has 2n ≤ N negative eigenvalues, there are
an uncountably infinite number of (skew-symmetric) matricesG that

gyroscopically stabilize the system. Having selected a matrix �G ≔ G
that gyro-stabilizes the system, our goal is to show that there are an
uncountably infinite number of indefinite damping matrices D that
guarantee that the damped gyroscopically stabilized system

�x� �D� �G� _x� Λx � 0 (9)

is exponentially stable. The dynamic system in Eq. (9) is thus made
exponentially stable by choosing any one of the indefinite matrices
�D ≔ D that exponentially stabilizes it. What exactly is meant by the
word “generic” in this context will be made clear later on.
In what follows, the system in Eq. (6) in whichG � �G is called the

undamped gyroscopically stabilized system, and the one in Eq. (9) is
called the damped gyroscopically stabilized system.
Remark 3: We note that x�t� � �TT ~M1∕2�q�t� ≔ Wq�t�. Once a

skew-symmetric �G ≔ G is chosen to gyro-stabilize the unstable

potential system [see Eq. (6)], and an indefinite matrix �D ≔ D is
chosen to make this gyroscopically stabilized system exponentially
stable [see Eq. (9)], the system described by

~M �q�� ~D� ~G� _q� ~Kq � 0 (10)

is made exponentially stable. In Eq. (10) the indefinite damping

matrix ~D in terms of the coordinate q is ~D � WT �DW, the gyroscopic

matrix ~G � WT �GW, and ~K � WTΛW.
Thus, once �G and then D � �D are found so that Eq. (9) is

exponentially stable, ~D and ~G can be found for the unstable potential

system in Eq. (1). By Sylvester’s law of inertia, ~K has the same

signature asΛ, thematrix ~D has the same signature as �D, and likewise

the matrix ~G. □

II. Main Results

As a prelude to the results to be obtained in this paper, we briefly
provide, in the lemma below, results hereto knownwhen the unstable
potential system has just two degrees of freedom (for a proof, see
Ref. [5]). Thus, n � 1,N � 2, and the 2-by-2 diagonal matrix Λ has
two negative eigenvalues −λ1; and − λ2; the row vector Kp �
Kp− � �−λ1;−λ2�.
Lemma 1: Consider a two-degree-of-freedom unstable potential

system

�
�x1
�x2

�
�

�
−λ1 0

0 −λ2

�
|��������{z��������}

Λ

�
x1
x2

�
� 0 (11)

in which the parameters λ1; λ2 > 0 are known. We introduce the

gyroscopic matrix G so the system

�
�x1
�x2

�
�

�
0 g
−g 0

�
|�����{z�����}

G

�
_x1
_x2

�
�

�
−λ1 0

0 −λ2

�
|��������{z��������}

Λ

�
x1
x2

�
� 0 (12)

is made stable. This requires that [5]

1� λ1; λ2 > 0; and

2�g2 � λ1 � λ2 � 2
���������
λ1λ2

p
� δ2; for any δ ≠ 0 (13)

The first of these conditions is met. The second condition can be

rewritten as [see Eq. (11)]

g2 � −Trace�Λ� � 2
���������������
Det�Λ�

p
� δ2; for any δ ≠ 0 (14)

Det�X�denotes the determinant ofX.As seen, thevalueofgneeded for
gyroscopic stabilization depends on the values of−λ1 and−λ2, and on
the choice of δ. By choosing a suitable value of �δ ≔ δ ≠ 0, a value of
�g ≔ g that satisfies Eq. (13) can be obtained, and the system described

in Eq. (12) therefore gyroscopically stabilized; however, onlymarginal

stability can be achieved; exponential stability is not possible [5]. The

chosen gyroscopically stabilized system (with �g ≔ g and �δ ≔ δ ≠ 0)
in Eq. (12) is thus succinctly described by the ordered quadruple

�r ≔ fλ1; λ2; �g; �δg. Given the quadruple �r, our aim now is to find an

indefinite damping matrix, DI, so that the damped gyroscopically

stabilized system is exponentially stable (superscript I for “indefinite”
damping).
We consider the following three cases, which depend on the values

of λ1 and λ2 of the unstable potential matrix Λ.
Case 1: When the gyroscopically stabilized system �r ≔

fλ1; λ2; �g; �δg has −λ1 < −λ2 < 0
The damped system [5]

�
�x1

�x2

�
�
�
d 0

0 −α

�
|���{z���}

DI

�
_x1

_x2

�
�
�
0 �g

− �g 0

�
|���{z���}

�G

�
_x1

_x2

�
�
�−λ1 0

0 −λ2

�
|������{z������}

Λ

�
x1

x2

�
�0; d;α>0

(15)

is to bemade exponentially stable by adding an appropriate indefinite

damping matrix DI to the system �r. Reference [5] shows that there
are an uncountably infinite number of indefinite damping matrices

DI that will render this system exponentially stable. The system

in Eq. (15) can be described by the ordered sextuple s �
fλ1; λ2; �g; �δ;−α; dg. For a more detailed description of this notation

see Appendix A. The values of the first four parameters of s are the
same as those in the quadruple �r that describes the specific undamped

gyroscopically stabilized system; therefore, the sextuple s too has

−λ1 < −λ2 < 0; the first element, λ1, of s is greater than its second

element, λ2. The (1,1) and (2,2) elements of DI correspond to the

sixth and fifth elements, respectively, of the sextuple s.
The way to explicitly find the region of exponential stability in the

α − d plane of a system s � fλ1; λ2; �g; �δ;−α; dgwhose first element,

λ1, is greater than its second element, λ2, is summarized in Appen-

dix A. This region of stability is continuous and connected [5].
By choosing any point with coordinates �α ≔ α and �d ≔ d that lies

within this region of exponential stability, the system described by

�s � fλ1; λ2; �g; �δ;− �α; �dg in which−λ1 < −λ2 < 0, or alternatively, the
system described in extensio by the equation [see Eq. (15)]
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�
�x1
�x2

�
�
�
�d 0

0 −α

�
|����{z����}

DI

�
_x1
_x2

�
�
�

0 �g

− �g 0

�
|����{z����}

�G

�
_x1
_x2

�
�
�
−λ1 0

0 −λ2

�
|�������{z�������}

Λ

�
x1
x2

�
� 0;

− λ1 <−λ2 < 0; �d; �α> 0 (16)

is guaranteed to be exponentially stable.
Case 2: When the gyroscopically stabilized system

�r ≔ fλ1; λ2; �g; �δg has −λ2 < −λ1 < 0
The damped system [5]�
�x1
�x2

�
�
�
−α 0

0 d

�
|���{z���}

DI

�
_x1
_x2

�
�
�
0 �g

− �g 0

�
|���{z���}

�G

�
_x1
_x2

�
�
�
−λ1 0

0 −λ2

�
|������{z������}

Λ

�
x1
x2

�
�0; d;α>0

(17)

is made exponentially stable by adding an indefinite damping matrix

DI to the system �rwith a proper choice of the parameters d and−α. A
continuous, connected region in the α − d plane exists for which the
system is exponentially stable [5]. The system in Eq. (17) can be

written as s 0 � fλ1; λ2; �g; �δ; d;−αg, in which the first four element of
s 0 are the same as those in �r; hence, the first element, λ1, of s

0 is now
less than its second, λ2. Note that now the (1,1) element of DI in
Eq. (17) is −α, and its (2,2) element is d. This is reflected in the sixth
and fifth element of s 0, respectively. Compare the matrices DI in
Eqs. (15) and (17).
In Ref. [5] it is shown that the region of exponential stability in the

α − d plane of the system s 0 � fλ1; λ2; �g; �δ; d;−αg in which −λ2 <
−λ1 < 0 is the same as that of the system s� � fλ2; λ1; �g; �δ;−α; dg.
Appendix A shows how to find the region of stability in the α − d
plane of system s� whose first element, λ2, is now greater than its
second, λ1. This region of stability is explicitly determined as shown
in Appendix A in the same manner as in Case 1.
Thus, using Appendix A we first find the region of exponential

stability for the system s� in the α − d plane, and then choose any

point with coordinates �α ≔ α and �d ≔ d within this region. Having

chosen this point, the system �s 0 � fλ1; λ2; �g; �δ; �d;− �αg [Eq. (17)]�
�x1
�x2

�
�
�
− �α 0

0 �d

�
|����{z����}

DI

�
_x1
_x2

�
�
�

0 �g

− �g 0

�
|����{z����}

�G

�
_x1
_x2

�
�
�
−λ1 0

0 −λ2

�
|�������{z�������}

Λ

�
x1
x2

�
� 0;

− λ2 <−λ1 < 0; �d; �α> 0 (18)

is then guaranteed to be exponentially stable.
Case 3:When the gyroscopically stabilized system is described by

�r ≔ fλ1; λ2; �g; �δg with −λ1 � −λ2 < 0
In this case, though stability can still be achieved by the addition of

an indefinite matrix DI with α � δ, only marginal stability is pos-
sible, and not asymptotic stability. This situation is nongeneric. In
complex engineered and naturally occurring physical systems that
are often modeled by hundreds, and commonly by thousands, of
degrees of freedom, such multiple (or close) eigenvalues are more
likely to arise. However, as shown in Sec. II.B, for MDOF systems in
which some of the negative eigenvalues may be equal, this difficulty
can almost always be circumvented, thus allowing such systems also
to bemade exponentially stable through the introduction of indefinite
damping (matrices). □

Remark 4: Equations (15) and (17) provide the following obser-
vation. Dissipative damping d > 0 in DI, or negative velocity feed-
back, is provided to the degree of freedom that has the lower of the
values among −λ1 and −λ2 in the potential matrix. The degree of
freedom that has the higher value among −λ1 and −λ2 receives

positive velocity feedback, namely, −α (α > 0) in DI .
The positive and negative velocity feedbacks that are required to

produce this indefinite damping canbe thought of as the control needed
to achieve exponential stability of thegyroscopically stabilized system.
Thus, to achieve exponential stability of the gyroscopically stabilized

system, one requires the simultaneoususe of both positive andnegative

velocity feedback. It is through the interaction of these competing

feedbacks that the system acquires exponential stability. □

A. Distinct Negative Eigenvalues of the Potential Matrix K̂

With this lemma in hand, we proceed to the N-degree-of-freedom

system in Eq. (3) in which the negative eigenvalues of the unstable

potential matrix are distinct. In the subsection that follows, we permit

the negative eigenvalues of Λ to be nondistinct.
Result 1:Consider a given unstableN-degree-of-freedompotential

system

�x� Λx � 0 (19)

in which Λ is a diagonal matrix having 2n ≤ N distinct negative

eigenvalues, and N − 2n > 0 positive eigenvalues.
The gyroscopically stabilized system described by

�x�G _x� Λx � 0 (20)

can be made marginally stable by an uncountably infinite number of

skew-symmetric matrices G. Having picked a particular skew-sym-

metric matrix �G ≔ G that bestows gyroscopic stability, the gyro-

scopically stabilized system

�x� �G _x�Λx � 0 (21)

can always be made exponentially stable using a suitable indefinite

damping matrixD. A methodology is developed to find an uncount-

able set of damping matrices D so that the damped gyroscopically

stabilized system

�x�D _x� �G _x�Λx � 0 (22)

can always be made exponentially stable for the given matrix �G that

makes the system in Eq. (21) gyroscopically stable.
Proof:The 2n negative diagonal elements of the potentialmatrixΛ

being distinct, with no loss of generality they can be ordered so that

−λ1 < −λ2 < · · · < −λ2n < λ2n�1 ≤ · · ·≤ λN (23)

where λi > 0; i � 1; 2; : : : ; N. Later on, this orderingwill be relaxed.
We can now take

Kp � �Kp−; Kp�� �
"
−λ1;−λ2; : : : ;−λ2n|�������������{z�������������}

Kp−

; λ2n�1; : : : ; λN|��������{z��������}
Kp�

#
(24)

so that Λ � diag�Kp�.
The methodology for obtaining exponential stability of the gyro-

scopically stabilized unstable potential system described in Eq. (21)

is carried out in two conceptual steps: 1) starting with Eq. (19), we

find the set of gyroscopic matrices G that ensure that Eq. (20) is

marginally stable, and 2) having picked a suitable matrix �G � G that

belongs to this set, we find a suitable matrix D that makes Eq. (22)

exponentially stable.
The unstable potential matrixΛ is split into two parts: one that has

all the negative eigenvalues, and the other that has all the positive

eigenvalues. The unstable part, which has 2n degrees of freedom, is

further expressed as a block diagonal matrix of n different two-

degree-of-freedom uncoupled subsystems. These n subsystems are

gyroscopically stabilized and made marginally stable. They are then

made exponentially stable by using an indefinite damping matrix

(Lemma 1, Case 1). The stable part of the potential matrix, Λs, has

N − 2n degrees of freedom and is marginally stable. It can be made

exponentially stable by using any positive-definite dissipative damp-

ing matrix.
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We denote the 2-by-2 block diagonal matrices

Λi �
�
−λ2i−1 0

0 −λ2i

�
≔ diag�−λ2i−1;−λ2i�; and

Gi �
�

0 gi
−gi 0

�
≔ Skew�gi�; i � 1; 2; : : : ; n (25)

and the diagonal matrix

Λs � diag�Kp�� � diag�λ2n�1; : : : λN� (26)

Note that, by assumption, each of the matrices Λi in Eq. (25) has
distinct negative eigenvalues.
The N-by-N diagonal matrix Λ and the N-by-N skew-symmetric

matrix G in Eq. (20) can then be written as the block diagonal
matrices,

Λ � BLKdiag�Λu;Λs� � BLKdiag�Λ1;Λ2; : : :Λn;Λs�; and

G � BLKdiag�G1; G2; : : : Gn;Gn�1�; Gn�1 � 0 (27)

where BLKdiag denotes block diagonal. The n submatrices Gi; i �
1; 2; : : : ; n, are each 2-by-2; the last block,Gn�1, ofG is an �N − 2n�-
by-�N − 2n� zero matrix. The subscripts u and s on Λ denote the
unstable and stable parts of the potential matrix, respectively.
Denoting ui � �x2i−1;x2i�T , i� 1;2; : : : ;n, and v��x2n�1; :::xN �T ,

Eq. (20) can now be written compactly as a set of the N − n
uncoupled subsystems:

�ui �Gi _ui � Λiui � 0; i � 1; 2; : : : n (28)

�v� Λsv � 0 (29)

Equation (28) consists of n two-degree-of-freedom gyroscopic
potential subsystems that are decoupled from one another; the ith
gyroscopic subsystem is described by the three parameters
−λ2i−1;−λ2i; and gi given in Eq. (25). Equation (29) consists ofN −
2n uncoupled single-degree-of-freedom marginally stable systems.
We know (Lemma 1) that by choosing

gi�
���������������������������������������������������������������
−Trace�Λi��2

�����������������
Det�Λi�

p
�δ2i

q
; with δi≠0; i�1;2;:::;n

(30)

each of the n subsystems in Eq. (28) can be made marginally stable.
Each choice of δi ≠ 0, 1 ≤ i ≤ n, corresponds to a value of gi,
1 ≤ i ≤ n, obtained from Eq. (30). The gi, 1 ≤ i ≤ n, that satisfy
Eq. (30) are therefore uncountably infinite. Each gi so chosen gives a
corresponding 2-by-2 skew-symmetric matrix Gi � Skew�gi�,
1 ≤ i ≤ n. Hence, there are an uncountably infinite number of Gi ’s
and therefore an uncountably infinite number of matrices G [see
Eq. (27)] that make the potential system marginally stable.
By choosing a specific set of �δi� �gi� ≔ δi�gi�; i � 1; 2; : : : ; n so that

they satisfy Eq. (30), the ith gyroscopic subsystem, 1 ≤ i ≤ n, ismade
marginally stable. We denote the parameters chosen that describe the
stabilized ith subsystem, 1 ≤ i ≤ n, in Eq. (28) by the ordered quad-

ruple �ri ≔ fλ2i−1; λ2i; �gi; �δig. With the quadruples so chosen, the
gyroscopically stabilized system [Eq. (21)] can then be written as

�ui � �Gi _ui � Λiui � 0; i � 1; 2; : : : n (31)

�v� Λsv � 0 (32)

Here �G � BLKdiag� �G1; �G2; : : : �Gn;Gn�1�, Gn�1 � 0,

�Gi � Skew� �gi�; i � 1; 2; : : : n (33)

Since Λs > 0, each of the N − 2n equations in Eq. (32) is also
marginally stable, and therefore there is no need to apply any

gyroscopic force to this subsystem; that is why the lowest block,

Gn�1, of the matrix G may be taken to be zero.
Noting that each subsystem �ri ≔ fλ2i−1; λ2i; �gi; �δig, 1 ≤ i ≤ n,

has −λ2i−1 < −λ2i < 0, we now introduce the indefinite damping

matrices

DI
i �

�
di 0

0 −αi

�
≔ diag�di;−αi�; di;αi > 0; i� 1;2;: : : ; n (34)

along with the matrix

DDiss
s � diag�c1; c2; : : : cN−2n�; ci > 0; i� 1;2; : : : ;N − 2n (35)

where the superscript I denotes indefinite damping matrices in
Eq. (34), and the superscript Diss denotes the �N − 2n�-by-�N −
2n� dissipative damping matrix in Eq. (35). The constants ci can be

suitably chosen to apportion a desired percentage of critical damping
to each of the uncoupledN − 2nmarginally stablemodes of vibration

of the potential subsystem shown in Eq. (32) in order to make them

asymptotically stable.
The resulting damped gyroscopically stabilized system is

�ui �DI
i _ui � �Gi _ui � Λiui � 0; i � 1; 2; : : : n (36)

�v�DDiss
s _v� Λsv � 0 (37)

In Eq. (36) there are n uncoupled damped gyroscopically stabi-

lized two-degree-of-freedom subsystems that now need to be made

exponentially stable. The ith, 1 ≤ i ≤ n, such marginally stable

subsystem is described by the quadruple �ri ≔ fλ2i−1; λ2i; �gi; �δig,
1 ≤ i ≤ n, whose elements are all known. To ensure its exponential

stability a proper choice of the parameters �αi; di� is required to be

made to specify thematrixDI
i [Eq. (34)]. Since the eigenvalues of the

matrix Λi are distinct with −λ2i−1 < −λ2i < 0, Lemma 1 guarantees

that exponential stability of each of the n subsystems in Eq. (36) is

always possible.
Recall that ui � �x2i−1; x2i�T , i � 1; 2; : : : ; n. Hence, by Case 1

in Lemma 1 [see Eqs. (11) and (25)], in each of the n subsystems in

Eq. (36), the degrees of freedom x2i−1, i � 1; 2; : : : ; n, receive
dissipative damping (or negative velocity feedback), whereas

the degrees of freedom x2i; i � 1; 2; : : : ; n, simultaneously receive

positive feedback, as shown by the structure of DI
i given in

Eq. (34).
Knowing the parameters in the quadruple �ri that describes the

specific ith gyroscopically stabilized system, the region of exponen-

tial stability in the α − d plane for this ith subsystem, 1 ≤ i ≤ n, in

Eq. (36) can be explicitly found (seeAppendixA). Any point �di ≔ di
and �αi ≔ αi can now be chosen within this region of exponential

stability so that the ith subsystem, 1 ≤ i ≤ n, is exponentially
stable. This ith damped exponentially stable system is then described

by the ordered sextuple �si � fλ2i−1; λ2i; �gi; �δi;− �αi; �dig. We denote
�DI
i ≔ diag� �di;− �αi�, i � 1; 2; : : : ; n.
That the N − 2n uncoupled single-degree-of-freedom subsystems

shown in Eq. (37) are each exponentially stable is trivial to show. This

is because the diagonal matrices DDiss
s and Λs are positive definite,

the former being so because it is diagonal, with elements ci > 0;
i � 1; 2; : : : ; N − 2n. Such a purely dissipative matrix can also be

brought about by simply using negative velocity feedback.
With the damping matrices so determined, the N-degree-of-free-

dom unstable potential system, which is gyroscopically stabilized as

in Eqs. (31) and (32), is rendered exponentially stable. That is, the

system

�ui � �DI
i _ui � �Gi _ui � Λiui � 0; i � 1; 2; : : : n (38)

�v�DDiss
s _v� Λsv � 0 (39)
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is guaranteed to have exponentially stability, and hence the system in

Eq. (10) is guaranteed to be exponentially stable. □

Remark 5:As seen from the proof, themain issue is bringing about

exponential stability in the n gyroscopically stabilized, marginally

stable two-degree-of-freedom subsystems shown in Eq. (31), which

contain the 2n negative eigenvalues of the unstable potential matrix

Λ. And for doing this, as we shall see later (Result 3), we really do not
need all the negative eigenvalues ofΛ to be distinct from one another;

all that is required by Lemma 1 is that the negative eigenvalues (or

diagonal elements) contained in each of the 2-by-2 matrices Λi; i �
1; 2; : : : ; n in Eq. (31) be distinct. □

Remark 6: Instead of using a diagonalmatrixDDiss
s [see Eq. (35)] in

Eq. (39) one could use any N − 2n matrix DDiss
s > 0; this would, in

general, couple the components of the vector v. □

Numerical Example 1: Consider the 11-degree-of-freedom unsta-

ble potential system

�x� Λx � 0 (40)

where Λ � diag�−6;−5.25;−4.5;−3.75;−3;−2.25;−1.75;−1.25;
1; 3; 5�. Thus, N � 11, and n � 4.
The row vectors

[

[ [

[

list the negative and the positive eigenvalues in ascending order. Note

that elements of the row vector Kp− are all distinct. In Sec. II.B, we

will consider systems when this is not so.
The eigenvalues inKp− are paired by the square brackets in Eq. (41)

so that we have 4 subsystems, each with two degrees of freedom. The

unstable potential matrix is Λ � BLKdiag �Λ1;Λ2;Λ3;Λ4;Λs� in

which

Λ1� diag�−6.5;−5.25�; Λ2� diag�−4.5;−3.75�;
Λ3� diag�−3;−2.25�; Λ4 ��−1.75;−1.25�; Λs � diag�1;3;5�

(42)

To gyroscopically stabilize each of these two-degree-of-freedom,

potential subsystemswe introduce fivegyroscopic (skew-symmetric)

matrices:

Gi � Skew�gi�; i � 1; 2; 3; 4; and G5 � diag�0; 0; 0� (43)

The 11-degree-of-freedom gyroscopic potential system
�x�G _x� Λx � 0, which is described by Eqs. (28) and (29), can

now be written in the expanded block-diagonal form as

2
666666664

�u1

�u2

�u3

�u4

�v

3
777777775

|{z}
�x

�

2
66666664

G1

G2

G3

G4

0

3
77777775

|�������������{z�������������}
G

2
666666664

_u1

_u2

_u3

_u4

_v

3
777777775

|{z}
_x

�

2
66666664

Λ1

Λ2

Λ3

Λ4

Λs

3
77777775

|��������������{z��������������}
Λ

2
66666664

u1

u2

u3

u4

v

3
77777775

|{z}
x

� 0

(44)

where we denote the two vectors u1�t� ≔ �x1; x2�T; u2�t� ≔
�x3; x4�T; u3�t� ≔ �x5; x6�T; u4�t� ≔ �x7; x8�T , and the 3-vector

v�t� ≔ �x9; x10; x11�T . As before, the uncoupled three-degree-of-

freedom system described by the 3-vector v is already marginally

stable, and needs no gyroscopic intervention; hence, the lowest

block, G5, along the diagonal of the matrix G is zero.

The other four uncoupled gyroscopic subsystems in Eq. (44) can
be stabilized (see Lemma 1) by choosing the elements gi in each of
the (nonzero) matrices Gi so that

gi �
����������������������������������������������������������������
−Trace�Λi�� 2

�����������������
Det�Λi�

p
� δ2i

q
; with δi ≠ 0; i� 1;2;: : : ; n

(45)

Using the parameters given in the matrices Λi, i � 1; 2; 3; 4,
we take the following values �gi ≔ gi, which satisfy Eq. (45):

�g1 �
������
35

p
≈ 5.92; �g2 �

������
25

p
� 5; �g3 �

������
15

p
≈ 3.87; and

�g4 �
������
10

p
≈ 3.16 (46)

With these values of �gi; i � 1; 2; 3; 4, the system shown in Eq. (44)

with Gi � �Gi � Skew� �gi�, i � 1; 2; 3; 4, is now marginally stable.
The quadruples that describe these gyroscopically stabilized subsys-
tems are

�r1�f6;5.25;
������
35

p
;3.53g; �r2�f4.5;3.75;5;2.92g;

�r3�f3;2.25;
������
15

p
;2.13g; and �r4�f1.75;1.25;

������
10

p
;2.01g (47)

We now determine the indefinite diagonal matrices DI
i �

diag�di;−αi�; i � 1; 2; 3; 4, and the matrix DDiss
s , so that this linear

undamped gyroscopically stabilized system is guaranteed to be
exponentially stable.
The expanded block diagonal form of the damped gyroscopically

stabilized system is [see Eqs. (36) and (37)]2
666666664

�u1

�u2

�u3

�u4

�v

3
777777775
�

2
666666664

DI
1 � �G1

DI
2 � �G2

DI
3� �G3

DI
4 � �G4

DDiss
s

3
777777775

|����������������������������������������������{z����������������������������������������������}
D� �G

2
66666664

_u1

_u2

_u3

_u4

_v

3
77777775

�

2
66666664

Λ1

Λ2

Λ3

Λ4

Λs

3
77777775

|������������������{z������������������}
Λ

2
66666664

u1

u2

u3

u4

v

3
77777775
� 0 (48)

Making the decoupled response v�t� of the lowest subsystem in
Eq. (48) exponentially stable is trivial; one can use any values to ci >
0; i � 1; 2; 3 with DDiss

s � diag�c1; c2; c3�. For example, these
parameters can be chosen to be c1 � 0.01; c2 � 0.03; c3 � 0.06,
so that the dissipative damping matrix to damp out the stable modes
of vibration of the potential system is then

DDiss
s � diag�0.01; 0.03; 0.06� (49)

To make the response ui�t�; i � 1; 2; 3; 4, of the other four gryo-
stabilized two-degree-of-freedom subsystems exponentially stable,
the stability regions in the α − d plane for each of these four
decoupled gyroscopically stabilized subsystems that are described
by the quadruples �ri; i � 1; 2; 3; 4, must be obtained. These fan-
shaped stability regions for each of these four gyroscopically stabi-
lized subsystems �ri; i � 1; 2; 3; 4, given in Eq. (47) are shown in
Fig. 1. The explicit determination of these regions of exponential
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stability is explained in the Appendix A (in which Case 1 is appli-

cable here).
The choice of any point �αi ≔ αi; �di ≔ di i � 1; 2; 3; 4, that lies in

the interior of the fan-shaped stability loop for the system described

by the quadruple �ri, i � 1; 2; 3; 4, when used in the damping matrix

DI
i � diag� �di;− �αi�, i � 1; 2; 3; 4, assures exponential stability of

the corresponding response ui�t� of the damped gyroscopically

stabilized subsystem [see Eqs. (36) and (48)]

�ui � �DI
i � �Gi� _ui � Λiui � 0; i � 1; 2; 3; 4 (50)

For illustration, four points are taken that lie inside each of the four
stability regions shown in Fig. 1 for each of the four uncoupled

gyroscopically stabilized systems �ri; i � 1; 2; 3; 4, in Eq. (47).

They are

� �α1; �d1���0.4;0.43�; � �α2; �d2���0.15;0.165�;� �α3; �d3���0.1;0.115�;
and � �α4; �d4���0.15;0.18� (51)

so that the matrices

�DI
1 � diag�0.43;−0.4�; �DI

2 � diag�0.165;−0.15�;
�DI
3 � diag�0.115;−0.1�; and �DI

4 � diag�0.18;−0.15� (52)

in Eq. (50). These four damped gyroscopically stabilized exponen-

tially stable subsystems are

�s1 �
�
6.5; 5.25;

������
35

p
; 3.53;−0.4; 0.43

�
;

�s2 � f4.5; 3.75; 5; 2.92;−0.15; 0.165g
�s3 �

�
3; 2.25;

������
15

p
; 4.55;−0.1; 0.115

�
;

�s4 � f1.75; 1.25;
������
10

p
; 2.01;−0.15; 0.18g (53)

Thus, the 11-degree-of-freedom damped gyroscopically stabilized

system described by

�ui � �DI
i _ui � �Gi _ui � Λiui � 0; i � 1; 2; 3; 4 (54)

�v�DDiss
s _v � Λsv � 0 (55)

with the matrices �Gi; �DI
i ; i � 1; 2; 3; 4, and DDiss

s given above is

guaranteed to be exponentially stable.
Simulations to computationally corroborate Result 1 (recall,

ui � �x2i−1; x2i�T , i � 1; 2; 3; 4) with the initial conditions chosen as

x2i−1�t� � 0.01; x2i�t� � −0.02; _x2i−1�t� � −0.02;

_x2i�t� � 0.01; i � 1; 2; 3; 4 (56)

are shown inFig. 2. The responsesx1�t�; x3�t�; x5�t�; and x7�t� of each
of the four damped gyroscopically stabilized subsystems in Eq. (53)

show exponential decay. The response v�t� � �x9�t�; x10�t�; x11�t��T
of the uncoupled three-degree-of-freedom dissipatively damped sub-

systems [see Eqs. (49) and (37)] whose equations are

�x9 � 0.01 _x9 � x9 � 0; �x10 � 0.03_x10 � 3x10 � 0; and

�x11 � 0.06_x11 � 5x11 � 0 (57)

are exponentially stable, and the response v�t� � �x9; x10; x11�T is not

shown for brevity. □

Remark 7:Because the elements along the diagonal of thematrixΛ
in Eq. (19) can be ordered in any manner with no loss of generality

(Remark 1), one could therefore choose to obtain n unstable potential
subsystems, eachwith two degrees of freedom, by including different

pairs of the negative eigenvalues in the set of n diagonal matrices

fΛ1;Λ2; : : : ;Λng from among the totality of the 2n negative eigen-

values of the unstable potential matrix, instead of the ones used in

Numerical Example 1, each negative eigenvalue appearing in only

one of the n matrices.
In fact, it is easy to see that there are

Q �
Yn
i�1

�2n − �2i − 1�� � 1 × 3 × 5 × : : : × �2n − 1� (58)

ways of pairing the 2n distinct negative eigenvalues ofΛ to form then
uncoupled two-degree-of-freedom unstable potential subsystems

described by the matrices Λi; i � 1; 2; : : : ; n.
For example, when n � 2 and Kp− � �−1;−2;−3;−4� we get

Q � 1 × 3 � 3 possible pairings of these four negative eigenvalues,
so that 1) Λ1 � diag�−2;−1�;Λ2 � diag�−4;−3�; 2) Λ1 �
diag�−3;−1�;Λ2 � diag�−4;−2�; and 3) Λ1 � diag�−4;−1�;
Λ2 � diag�−3;−2�. When n � 4, as in Numerical Example 1,

Fig. 1 Regions of exponential stability for the four gyroscopically stabilized systems: a) �r1�t�, b) �r2�t�, c) �r3�t�, and d) �r4�t�.
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the number of such pairings exponentially explodes to Q �
1 × 3 × 5 × 7 � 105!
Each such pairing of the 2n negative eigenvalues leads to a set of n

two-degree-of-freedom (unstable) potential systems, which in turn

lead to a set of n two-degree-of-freedom gyroscopic potential sub-

systems that have the structure described by Eq. (28). □

Numerical Example 2: As stated in Remark 7, one could re-order

the negative eigenvalues of the matrix Λ contained in the row vector

Kp− in a manner differently from that in Numerical Example 1, so

that, for example, one pairing (out of the 105 possible parings) is

instead of that in Eq. (41). The pairing of these eigenvalues is shown

by square brackets above each pair, and the λi’s are relabeled above

each square bracket. This leads to four two-degree-of-freedom unsta-

ble potential subsystems:

Λ1 � diag�−6;−3�; Λ2 � diag�−2.25;−5.25�;
Λ3 � diag�−4.5;−1.75�; and Λ4 � diag�−3.75;−1.25� (60)

instead of the ones use earlier in Eq. (42). We keepΛs unchanged, as

in Eqs. (42). The subsystems Λ1;Λ3; and Λ4 belong to Case 1 of

Lemma 1. The subsystem Λ2 belongs to Case 2 of Lemma 1,

since −λ4 < −λ3 < 0.
Corresponding to the matrices in Eq. (60), the parameters

gi; i � 1; 2; 3; 4, in the matrices Gi; i � 1; 2; 3; 4, [see Eq. (43)]

are chosen to satisfy Eq. (45) so that each of the four gyroscopic

systems is marginally stable. They are

�g1 �
������
20

p
≈ 4.47; �g2 �

������
20

p
≈ 4.47;

�g3 �
������
15

p
≈ 3.87; and �g4 �

������
15

p
≈ 3.87 (61)

These values of �gi; i � 1; 2; 3; 4, when used in Eq. (43) yield the

gyroscopic matrices �Gi � Skew� �gi�; i � 1; 2; 3; 4, which make the

five decoupled systems

�ui � �Gi _ui � Λiui � 0; i � 1; 2; : : : n (62)

�v� Λsv � 0 (63)

marginally stable. Instead of those shown in Eq. (47), the four

gyroscopically stabilized subsystems are

�r1 �
�
6; 3;

������
20

p
; 1.58

�
; �r2 �

�
2.25; 5.25;

������
20

p
; 2.37

�
;

�r3 �
�
4.5; 1.75;

������
15

p
; 1.77

�
; and �r4 �

�
3.75; 1.25;

������
15

p
; 2.38

�
(64)

Note that the gyroscopic forces needed to gyro-stabilize these
subsystems are on the whole smaller than those needed in Numerical

Example 1 [see Eq. (46)]. This points out that proper pairing of the
negative eigenvalues ofΛ has a substantial effect on themagnitude of

the gyroscopic forces needed to stabilize the unstable potential
systems [compare Eqs. (41) and (59)]. Note that the first element

of the ordered quadruple �r2 is smaller in value than its second

element; this affects the degree of freedom that receives positive
feedback in this subsystem.
Next, we seek to make each of these four gyroscopically stabilized

subsystems in Eq. (62) exponentially stable through the introduction

of an appropriate linear indefinite damping matrix.
The subsystem described by v�t� in Eq. (44), which has a positive

definite potentialmatrix, can bemade exponentially stable trivially as

explained earlier in Remark 6, and we shall not bother with it.
We therefore focus attention on the responses ui; i � 1; 2; 3; 4, of

the four decoupled subsystems that are each gyroscopically stabilized.

Our aim is to seek indefinite damping matrices �DI
i ; i � 1; 2; 3; 4, that

guarantee the exponential stability of each of these subsystems, thus
making the entire system shown in Eq. (48) exponentially stable.
This is done by first obtaining the four different regions of expo-

nential stability in the α − d plane for each of these four gyroscopi-
cally stabilized subsystems described in Eq. (64) by the quadruples

�ri; i � 1; 2; 3; 4. Any point defined by the coordinates ��αi; �di� that
lies inside the region of exponential stability of the ith damped

gyroscopically stabilized subsystem, 1 ≤ i ≤ 4, can then be used to
guarantee exponential stability of the ith subsystem, i.e., exponential

stability of ui�t�.
The regions of exponential stability for the indefinitely damped

four gyroscopically stabilized, two-degree-of-freedom subsystems
�ri; i � 1; 2; 3; 4, shown in Eq. (64) are found as explained in Appen-

dix A. They are shown in Fig. 3a. Picking any point � �αi; �di� in the

Fig. 2 Exponentially stable responses of gyroscopically stabilized subsystems �ri in Eq. (47): a) i � 1, b) i � 2, c) i � 3, and d) i � 4.
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region of stability of the ith gyroscopically stabilized subsystem and

setting �DI
i � diag� �di;− �αi�; i � 1; 3; 4, and �DI

2 � �− �α2; �d2� will
render the gyroscopically stabilized subsystems of Eq. (64) exponen-

tially stable. Some care is required with �DI
2 for the two-degree-of-

freedom subsystem formed from Λ2 in Eq. (64) for the coordinate
u2�t�, which uses Case 2 of Lemma 1. For brevity, the response of
each damped subsystem when a point in its corresponding stability

region is chosen to specify the indefinite damping matrices �DI
i ,

i � 1; 2; 3; 4, is not shown.
To illustrate the effect of the magnitude of the gyroscopic forces

applied to each of the four subsystems on their respective regions of
exponential stability, we increase the gyroscopic forces described by
�gi; i � 1; 2; 3; 4 from those shown in Eq. (61) to

�g1 � 7; �g2 � 6; �g3 � 5; and �g4 � 5 (65)

so that instead of Eq. (64), we now have

�r1 � f6; 3; 7; 5.61g; �r2 � f2.25; 5.25; 6; 4.65g;
�r3 � f4.5; 1.75; 5; 3.62g; and �r4 � f3.75; 1.25; 5; 3.96g (66)

The first two parameters of each quadruple in Eq. (66) are the same
as those in Eq. (64), and thereforeΛi; i � 1; 2; 3; 4, are same as before
[Eq. (60)]; that is, it is same unstable potential systemΛwehad before.
The fan-shaped stability regions that result using Eq. (66) are shown in
Fig. 3b. The stability loops are seen to be somewhat bigger and fatter.
In practical situations one would usually desire larger exponential

stability regions because they bestow greater robustness. The in-
creased robustness appears to come with increased investment in
gyroscopic forces used for gyroscopic stabilization though. □

We provide below a general methodology for guaranteeing asymp-
totically stable behavior of anN-degree-of-freedompotential system that
has 2n distinct negative eigenvalues and (N−2n) positive eigenvalues.
The methodology comprises a setup stage and a four-step procedure.
Result 2: Consider the N-degree-of-freedom unstable potential

system

�x� Λx � 0 (67)

where Λ is a diagonal matrix with the eigenvalues of K̂ �
M−1∕2 ~KM−1∕2 along its diagonal. Assume that the potential matrix

K̂� ~K� has 2n ≤ N negative eigenvalues that are distinct, and N − 2n
positive eigenvalues.
Setup: Put the 2n negative eigenvalues of K̂ in a row vector, K 0

p−,

placing them in any desired order; place the positive eigenvalues of K̂
in the row vector Kp� in any desired order. The vector K 0

p− and the

vector Kp� so obtained are

The negative eigenvalues listed in K 0
p− are paired as shown by the

square bracket above each pair. It is convenient to have the first

member of each pair less that its second member. If the first member

in any pair is larger than its second, the positions of the two members

in the pair are switched, without loss of generality. We shall assume

that this has been done so that we obtain the new 2n-row vector

with

inwhichwe again denote the pairs (after relabeling the λ’s, as needed)
by square brackets above each pair. In each pair in Eq. (69) the

member on the left is less than the member on its right.
The set of equations in Eq. (67) are uncoupled, and with no loss of

generality, we can rewrite Eq. (66) (with a possible relabeling of the

xi’s) so that

�x� Λx � 0;where now Λ � diag�Kp−; Kp�� (70)

Inwhat followswe assume that this relabeling is done, andEq. (70)

represents our unstable potential system.
After this setup stage, which basically organizes the eigenvalues of

the unstable potential matrix K̂ in a systematic way, we now proceed

with the four-step methodology.
Step 1: a) Using the row vector Kp− [Eq. (69)], to form the 2-by-2

unstable potential matrices Λi�diag�−λ2i−1;−λ2i�;i�1;2; : : : ;n,
and the 2-by-2 unstable potential systems

�ui � Λiui � 0; i � 1; 2; : : : ; n (71)

in which ui � �x2i−1; x2i�; i � 1; 2; : : : ; n, and the xi’s come from

Eq. (70). Notice that in the setup stage [Eq. (69)] we have ensured that

in each of the unstable potential matrices Λi, 1 ≤ i ≤ n, we

have −λ2i−1 < −λ2i.
b) Specify the remainder of the potential system, which is margin-

ally stable, as

�v� Λsv � 0 (72)

in which v � �x2n�1; x2n�2; : : : ; xN �T , and Λs � diag�Kp��.
Thus the unstable part of the potential system is organized as a

set of n uncoupled two-degree-of-freedom unstable (potential)

systems, and the stable part of the potential system is organized

into an (N−2n)-degree-of-freedom marginally stable system. The

potential matrix of the unstable potential system is thus represented

now as Λ � BLKdiag�Λ1;Λ2; : : : ;Λn;Λs� � BLKdiag�Λu;Λs�.
Step 2: Choose �δi; i � 1; 2; : : : ; n, such that

�gi �
�����������������������������������������������������������������
−Trace�Λi� � 2

�����������������
Det�Λi�

p
� �δ2i

q
; �δ ≠ 0; i � 1;2; : : : ; n

(73)

Fig. 3 Exponential stability regions for the four subsystems with quadruples �ri, i � 1, 2, 3, 4, in a) Eq. (64) and b) Eq. (66).
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The n unstable potential systems

�ui �
�

0 �g

− �gi 0

�
_ui �

�
−λ2i−1 0

0 −λ2i

�
ui � 0;

− λ2i−1 < −λ2i < 0; i � 1; 2; : : : ; n (74)

are then gyroscopically stabilized. They are denoted by �ri �
fλ2i−1; λ2i; �gi; �δig, i � 1; 2; : : : ; n.
Step 3: Consider the n damped systems

�ui �
�
�di 0

0i − �αi

�
|������{z������}

�DI
i

_ui �
�

0 �gi
− �gi 0

�
|������{z������}

�Gi

_ui �
�
−λ2i−1 0

0 −λ2i

�
ui � 0;

− λ2i−1 < −λ2i < 0; i � 1; 2; : : : ; n; di; αi > 0 (75)

also denoted by si � fλ2i−1; λ2i; �gi; �δi;− �αi; �dig, i � 1; 2; : : : ; n.
To obtain the appropriate values of �αi; �di > 0 to guarantee expo-

nential stability, do the following.
1) Find the region of exponential stability in theα − d plane for each

of the n gyroscopically stabilized subsystems �ri; i � 1; 2; : : : ; n
[Eq. (74)]. Use Case 1 from Appendix A to do this, since
−λ2i−1 < −λ2i < 0; i � 1; 2; : : : ; n.
2) Pick any point with coordinates � �αi; �di� that lies in the stability

zone of the ith subsystem, 1 ≤ i ≤ n, and thereby obtain the param-

eters �αi and �di in Eq. (75).
Step 4: Add dissipative damping DDiss

s > 0 to the subsystem in
Eq. (72)

�v�DDiss
s _v� Λsv � 0 (76)

where DDiss
s is any �N − 2n�-by-�N − 2n� positive definite matrix.

The corresponding matrices that make Eq. (9) (with D � �D)

exponentially stable are then �G ≔ G � BLKdiag� �G1; �G2; : : : ;
�Gn; 0�, �D � BLKdiag� �DI

1; �DI
2; : : : �D

I
n;D

Diss
s �. This result directly

translates into making the unstable gyroscopically stabilized poten-
tial system in Eq. (1) exponentially stable (see Remark 3). □

B. Multiple Negative Eigenvalues of the Potential Matrix K̂

We show in this subsection that though a two-degree-of-freedom
gyroscopically stabilized system with identical eigenvalues cannot
be made exponentially stable by using indefinite damping, an N-
degree-of-freedom system with several negative eigenvalues with
different multiplicities greater than 1 can almost always be made
exponentially stable. The necessary and sufficient conditions that
permit exponential stability are obtained.
Consider the diagonal potential matrix Λ � BLK�Λu;Λs� ≔

BLKdiag�Λ1;Λ2; : : : ;Λn;Λs� with n 2-by-2 diagonal potential
matrices Λi < 0; i � 1; 2 : : : ; n, and a square �N − 2n� diagonal
matrix Λs > 0. If the two negative diagonal elements in each Λi

are different, then each of these n unstable potential subsystems, after
gyroscopic stabilization, is guaranteed to be made exponentially
stable by use of an appropriate indefinite damping matrix (Lemma
1). If, however, evenone potential subsystem, say,Λk < 0,1 ≤ k ≤ n,
has identical elements, then after gyroscopic stabilization, that sys-
tem cannot be made exponentially stable. And hence the entire
system cannot be made exponentially stable.
The unstable potential subsystems Λi; i � 1; 2 : : : ; n, are, of

course, obtained by organizing the 2n negative eigenvalues of the
potential system into n pairs, with each pair forming the diagonal
elements of thesendiagonalmatrices (see the setup stage inResult 2).
Remark 7: Consider an 11-degree-of-freedom potential system,

but assume that now the eigenvalues of the system are

Λ� diag�−6;−5.25;−4.5;−3.75;−3;−1.25;−1.25;−1.25;1;3;5�
(77)

so that we have a single negative eigenvalue, −1.25, that has a
multiplicity of 3. A gyroscopically stabilized two-degree-of-freedom

subsystem that has a potential matrix diag�−1.25;−1.25� cannot be
made, after gyroscopic stabilization, exponentially stable by using an
indefinite damping matrix.
But with no loss of generality, the eight negative eigenvalues of the

potential matrix Λ in Eq. (77), which constitute the row vector Kp−,
can be listed in any order (Remark 1), and therefore can be paired to
create two-degree-of-freedom (unstable) potential subsystems in any
way we want. The negative eigenvalues shown in Eq. (77) can be
listed, for example, as

and paired, as shown by the brackets above each pair. Each pair
has two eigenvalues that differ from one another. The pairing in
Eq. (78) can be used for describing the potential matrices Λi �
diag�−λ2i−1;−λ2i�; i � 1; 2; 3; 4, so that

Λ1 � diag�−6;−3�; Λ2 � diag�−5.25;−1.25�;
Λ3 � diag�−4.5;−1.25�; and Λ4 � diag�−3.75;−1.25� (79)

As seen in Eq. (79), the multiple negative eigenvalue−1.25 ofΛ is
simply distributed among three pairs and the pairing leads to four
two-degree-of-freedom unstable (uncoupled) potential subsystems.
EachΛi; i � 1; : : : ; 4, has distinct elements; exponential stability of
the potential system is then guaranteed after gyroscopic stabilization
(Result 2). □

Remark 7 shows that it may be possible, at times, to circumvent the
problem raised by multiple negative eigenvalues of the potential
matrix K̂. The question is whether it is always possible to have such
a pairing of the 2n negative eigenvalues of a potential system so that
each of the n pairs has distinct elements in it.
It is clear that there can be no such guarantee on being able to do

this as is obvious when the 2n negative eigenvalues of the potential
system are identical. But the situation can get even subtler. To
illustrate, suppose that an 11-degree-of-freedom unstable potential
system has the eigenvalues

Λ�diag�−6;−5.25;−4.5;−1.25;−1.25;−1.25;−1.25;−1.25;1;3;5�
(80)

instead of those in Eq. (77). Now the multiplicity of the eigenvalue,
−1.25, is 5 and no pairing of the 8 negative eigenvalues can be made
with each pair having different eigenvalues in it; at least one of the
2-by-2 matrices Λi < 0; i � 1; 2; 3; 4, that contain the 8 negative
eigenvalues of Λ will have identical elements. On the other hand, if
the multiplicity of the eigenvalue −1.25 is 4, then such a pairing is
possible, and one can make four two-degree-of-freedom (unstable)
potential subsystems that can then be gyroscopically stabilized, and
thereafter made exponentially stable!
An additional difficulty that may arise in N-degree-of-freedom

unstable potential systems in which N could be in the thousands is
that there may be many negative eigenvalues, each with different
multiplicities greater than 1. Under what conditions are we guaran-
teed to find a pairing of the 2n negative eigenvalues such that each
pair has different eigenvalues in it? That is, underwhat conditions can
each of the n two-degree-of-freedom unstable potential subsystems
have distinct negative eigenvalues, so that after gyroscopic stabiliza-
tion each of them is guaranteed to be made exponentially stable by
using an indefinite damping matrix? The answer to this question
takes us to the field of combinatorics. In order not to break the chain
of thought, these questions are answered in some generality in
Results A1 and A2 in Appendix B and are stated here.
Lemma 2: Consider the 2n negative eigenvalues of the symmetric

matrix K̂. Let k of these 2n eigenvalues be distinct and denote the row
vector that contains these (negative) distinct eigenvalues by �Kp− �
�−λ1;−λ2; : : : ;−λk�, with λi > 0; i � 1; 2; : : : k. Denote the multi-
plicity of the negative eigenvalue −λi, by mi ≥ 1; i � 1; 2; : : : ; k.
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Let the distinct eigenvalue −λl, 1 ≤ l ≤ k, have multiplicityml, such

thatml ≥ mi, ∀ i ≠ k. Then a necessary and sufficient condition that
npairs can bemade from these 2n negative eigenvalues so that no pair
has identical eigenvalues in it is that

ml ≤ n (81)

Proof: Note that in the statement of the lemma, no negative

eigenvalue ofΛ has a multiplicity that exceedsml. The proof is given

in Result A1 in Appendix B. □

We illustrate this lemma with the following numerical example.
Numerical Example 3: 1) Let the six negative eigenvalues of K̂ be

Kp− � �−2;−3;−2;−3;−4;−5�, and let Kp� � �1; 3�. Here

N � 8; n � 3, and �Kp− � �−2;−3;−4;−5� so that k � 4. The

eigenvalue −2 has multiplicity ml � 2, which is not exceeded by

any of the other negative eigenvalues; also, ml ≤ n. Hence, one can
pair the six eigenvalues so that each pair has distinct numbers in it.

For example, by reordering the elements of Kp− one can write

in which the square brackets show

the pairs. The three two-degree-of-freedom unstable uncoupled

potential systems obtained from this pairing are

Λ1�diag�−3;−2�; Λ2�diag�−3;−2�; and Λ3�diag�−5;−4�
(82)

and Lemma 1 guarantees that these gyroscopically stabilized poten-

tial subsystems can be made exponentially stable.
2) Let the six negative eigenvalues of K̂ be, Kp− �

�−2;−2;−2;−2;−3;−5�, and let Kp� � �1; 3�. Here N � 8, and

n � 3. The negative eigen-value −2 has multiplicity 4 and no neg-

ative eigenvalue has a higher multiplicity. Since ml � 4 > n there

can be no pairing of the negative eigenvalues so that each pair

has different numbers in it. For example, the pairing shown by

leads to the smallest number of

pairs (namely, 1, in this case) that have identical negative eigenvalues

in them. An alternative pairing has

a larger number of such pairs, namely, two pairs now. The first pairing

leads to the potential submatrices:

Λ1 � diag�−3;−2�; Λ2 � diag�−5;−2�; and Λ3 � diag�−2;−2�
(83)

Thus, the two-degree-of-freedom potential subsystem described

by the potential matrixΛ3 has identical eigenvalues. Though it can be

gyroscopically stabilized, it cannot be made exponentially stable

through the use of an indefinite damping matrix. By Lemma 1, this

potential subsystem can only be made marginally stable; hence, the

entire system remains only marginally stable. □

Lemma 2 leads to the following result.
Result 3: Consider the N-degree-of-freedom unstable potential

system

�x � Λx (84)

where Λ is a diagonal matrix with the eigenvalues of K̂ running

down its diagonal. The matrix K̂ has 2n ≤ N negative eigenvalues

and �N − 2n� positive eigenvalues. Let one or more of the negative

eigenvalues of K̂ have multiplicity greater than 1. Let ml be

the highest multiplicity among the distinct negative eigenvalues of

K̂. If

ml ≤ n (85)

the N-degree-of-freedom unstable potential system can be gyro-

scopically stabilized, and it can always be made exponentially stable

by using (an) indefinite damping (matrix). We shall refer to such an
unstable potential system that satisfies relation (85) as being generic.
Alternatively stated, every generic MDOF unstable potential

system that has an even number of negative eigenvalues can be
gyroscopically stabilized, and the gyroscopically stabilized system
can always be made exponentially stable.
Proof: By Lemma 2, the negative eigenvalues in Kp− can always

be paired so that the negative eigenvalues in each of the 2-by-2
matrices Λi; i � 1; 2; : : : ; n, are different. Result 2 then guarantees
that the gyroscopically stabilized system can always be made expo-
nentially stable by using indefinite damping. □

Remark 9: Consider an unstable 100-degree-of-freedom potential
system whose potential matrix has, say, 30 negative eigenvalues. It is
generic if none of these negative eigenvalues have a multiplicity that
exceeds 15. Although it might be possible for a physical system to
have a negative eigenvaluewhose multiplicity may perhaps be 3 or 4,
from a practical standpoint it is very unlikely to have a negative
eigenvalue whose multiplicity exceeds 15, and therefore this 100-
degree-of-freedom unstable potential system ismore than likely to be
generic, which implies that it can be made exponentially stable after
gyroscopic stabilization by using indefinite damping. □

Remark 10: In Lemma 2, when the 2n negative eigenvalues of K̂
have multiplicities and ml ≤ n, the number of ways of pairing these
negative eigenvalues so that each of the n pairs has different eigen-
values in it does not seem to be easy to find in general, and appears to
be not explicitly known. This is unlike the case when the 2n negative

eigenvalues of K̂ are distinct [see Eq. (58)]. □

Remark 11: When the multiplicity of the negative eigenvalues of
the unstable potential matrix Λu exceeds n, there is a negative
eigenvalue whose multiplicity ml is the highest, with ml � n� r.
From Lemma 2, the 2n negative eigenvalues of the potential matrix
cannot be paired now so that each pair has different eigenvalues in it,
and there will be some pairs containing identical eigenvalues. Let the
number of pairs with identical eigenvalues be Ir. Result A2 in
Appendix B shows that there exists a pairing of the 2n negative
eigenvalues for which Ir is a minimum, and that this minimum value
of Ir equals r. A constructiveway of obtaining a pairing among the 2n
negative eigenvalues that has a minimum value of Ir is also given in
Result A2. □

This means that when the unstable potential system is nongeneric
there will be at least r 2-by-2 unstable potential subsystems that will
have identical negative eigenvalues. Thus, therewill be aminimum of r
2-by-2 unstable potential subsystems among theΛi < 0;� 1; 2; : : : ; n,
which, after gyroscopic stabilization, cannot be made exponentially
stable by using indefinite dampingmatrices andwill remain marginally
stable. SuchanongenericMDOFsystem, cannot bemadeexponentially
stable through the use of indefinite damping using the methodology
developed; it will only be marginally stable.

III. Conclusions

This paper shows that a generic unstable potential MDOF system
whose potential matrix has an even number of negative eigenvalues
can always be gyroscopically stabilized, and the gyroscopically
stabilized MDOF system can further always be made exponentially
stable by using an uncountably infinite number of indefinite damping
matrices. By “generic” it ismeant that the unstable potential matrix of
the system has the following property: it does not have any negative
eigenvalue whose multiplicity exceeds half the total number of its
negative eigenvalues. Most large-scale, real-life gyroscopically sta-
bilized systems that have many degrees of freedom would therefore
be encompassed by this property that defines genericity, and there-
fore would be guaranteed to be made exponentially stable.
Besides showing that this result is true for unstable conservative

MDOF systems described above, a general stepwise constructive,
simple methodology of achieving exponential stability for any generic
MDOF system is provided. Themethodology provides a practical way
of achieving exponential stability of gyroscopically stabilized unstable
potential systems in real-world applications through the simultaneous
use of positive and negative velocity feedback.
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Making the gyroscopically stabilized system exponentially stable

has yet another important consequence.Many aerospace andmechani-

cal systems are nonlinear, and the linear equations dealt with in this

paper are often the result of linearizations around equilibrium points of

these nonlinear systems. Because gyroscopic stabilization leads to

marginal stability of an unstable potential (conservative) system, there

is no guarantee that the original nonlinear system from which the

linearized system is obtained will remain stable at this equilibrium

point, because the equilibrium point of the linearized system is non-

hyperbolic. The introduction of exponential stability in a gyroscopi-

cally stabilized system through indefinite damping makes the

equilibrium point of the linearized system hyperbolic, and thus ensures

that in the vicinity of this equilibrium point the original nonlinear

system remains stable.
The 150-year-old KTC result is an important paradigm and a corner-

stone of the theory of linear stability. As in this paper, the KTC theorem

deals solely with systems subjected to three qualitatively different

forces: potential positional forces that make the system unstable, called

unstable potential systems for short; gyroscopic forces; and linear-in-

velocity damping forces characterized by a damping matrix. It states

that anyunstable conservativeMDOFsystem that canbegyroscopically

stabilized becomes unstable in the presence of a linear-in-velocity

damping force that is dissipative and characterized by a positive definite

damping matrix [1–6]. In contrast to the KTC result, we have shown

here that generic unstable conservative MDOF systems can be gyro-

scopically stabilized and can always be made exponentially stable, by

the addition of a linear-in-velocity damping force that is indefinite and

characterized by an indefinite damping matrix. The approach provides

the entire stability boundaries explicitly in a straightforward manner.

The results presented in this paper therefore point to a new and different

paradigm from KCTwhen dealing with linear-in-velocity indefinitely

damped gyroscopically stabilized systems.
The stability of such gyroscopically stabilized systems is brought

about by the simultaneous use of both negative velocity feedback (or

dissipative damping) and positive velocity feedback. It is shown that

these competing feedbacks, when appropriately devised and com-

bined, constructively interact with each other bestowing guaranteed

exponential stability. At root, the basic idea in achieving such expo-

nential stability is the balanced simultaneous dissipation and injec-

tion [16,17] of energy to the gyroscopically stabilized system.

Perhaps Kelvin and Tait did not think of injecting and simultaneously

dissipating energy, because the injection of energy to bring about

exponential stability is somewhat counterintuitive.
The methodology developed in the paper provides a guaranteed

approach to make gyroscopically stabilized spinning aerospace and

mechanical systems exponentially stable, something thus far thought

impossible to do in the presence of energy dissipation.

Appendix A: Explicit Determination of the Exponential
Region of Stability for a Gyroscopically Stabilized Two-

Degree-of-Freedom Potential System

Consider a given gyroscopically stabilized dynamic system
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in which
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System (A1) is also denoted by the ordered quadruple �r �
fλ1; λ2; �g; �δg in which the negative sign on the λ 0s is dropped.
Our objective is to introduce an indefinite damping matrix DI so

that system (A1) is exponentially stable.

We begin by specifying some notation. Consider the system

�
�x1
�x2

�
�
�
d 0

0 −α

�
|���{z���}

DI

�
_x1
_x2

�
�
�
0 �g

− �g 0

�
|���{z���}

�G

�
_x1
_x2

�
�
�
−λ1 0

0 −λ2

�
|������{z������}

Λ

�
x1
x2

�
�0; d;α>0

(A2)

We denote it by the ordered sextuple s � fλ1; λ2; �g; �δ;−α; dg. For
convenience, we again drop the negative signs on the λ 0s. The (1,1)
and (2,2) elements ofDI in Eq. (A2) are the sixth and fifth elements,

respectively, of the ordered sextuple s. Similarly, the (1,1) and (2,2)

elements of Λ without the minus signs are the first and the second

elements, respectively, of s.
The sextuple s� � fλ2; λ1; �g; �δ;−α; dg, which has its first two

elements switched when compared with those in the sextuple s,
therefore is the system
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Similarly, the ordered sextuple s 0 � fλ1; λ2; �g; �δ; d;−αg, which
has its last two elements switched when compared with those in s, is
the system
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We now consider three cases as in Lemma 1.
Case 1: The gyroscopically stabilized system described by the

ordered quadruple �r � fλ1; λ2; �g; �δg has −λ1 < −λ2 < 0.
We consider the damped system s � fλ1; λ2; �g; �δ;−α; dg, in which

the first four elements of the sextuple are identical to those of �r. The
first element, λ1, of s is therefore greater than its second element λ2,
since −λ1 < −λ2 < 0.
Our aim is to find an appropriate indefinite damping matrix DI �

diag�d;−α� so that the response of system (A2) is exponentially

stable. This entails finding one or more appropriate pairs of values

fα � �α; d � �dgi � 1; 2; : : : , so that this equation, (A2), is exponen-
tially stable.
To find such pairs, the region of exponential stability is found

in the α − d plane for the system in Eq. (A2) and denoted by s �
fλ1; λ2; �g; �δ;−α; dg in which the first element of s is greater than its

second. The determination of this region is done as follows [5].

We define k ≔
λ1
λ2

> 1, and consider a ray starting from the origin

of the α − d plane that has slope

u�γ� ≔
�
1� �k − 1�

γ

�
(A5)

so that this ray is described by the equation

d � u�γ�α (A6)

Such a ray that emanates from the origin O is shown in Fig. A1 by

the dashed line.
We consider all such rays in the first quadrant of the α − d plane

that go through the origin O and have slopes u�γ2� < u�γ� < u�γ1�,
where

γ1 � 1� 1
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and
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The rays with these slopes are shown by the solid (red) lines
in Fig. A1.
Every point along any such ray with slope u�γ2� < u�γ� < u�γ1�,

like the one shown in Fig. A1 by the dashed line, whose α-coordinate
satisfies the inequality

0 < α <

�������������������������������������������
γn�γ�

λ2�γ − 1��k� γ � 1�

s
≔ αmax�γ� (A9)

where

n�γ� � λ2��δ2 � 2
���������
λ1λ2

p
��γ − 1� − λ1λ2 − λ22�γ − 1� (A10)

lies inside the region of exponential stability of the system. This
stability region is outlined by the black, fan-shaped loop in Fig. A1.
Relations (A5–A10) give the explicit determination of this region.

We can denote by S this exponential stability region that is so

obtained for the system s � fλ1; λ2; �g; �δ;−α; δg, in which λ1 > λ2 >
0 [see Eq. (A2)].
Any representative point P with coordinates fα � �α; d � �dg that

lies inside S (see Fig. A1) when used in Eq. (A2) will make the
gyroscopically stabilized system exponentially stable provided that

λ1 > λ2 > 0. That is, the ordered sextuple �s � fλ1; λ2; �g; �δ;− �α; �dg
guarantees asymptotically stability. Because the stability region is
connected and continuous [5], one obtains an uncountably infinite
number of indefinite damping matrices that will make the system s
[or, alternately Eq. (A2)] exponentially stable.
Thus, for the gyroscopically stabilized system �r � fλ1; λ2; �g; �δg

with −λ1 < −λ2 < 0, the system�
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is exponentially stable for any � �α; �d� belonging to the region of
exponential stability in the α − d plane obtained by using
Eqs. (A5–A10).
It is important to note that the procedure given by Eqs. (A5–A10)

to explicitly obtain the region of exponential stability requires that the
sextuple smust have its first argument, λ1, greater than its second, λ2.
Result 2 relies on this.
Case 2: The gyroscopically stabilized system described by the

ordered quadruple �r � fλ1; λ2; �g; �δg has −λ2 < −λ1 < 0.
To obtain exponential stability of this system by using an indefinite

damping matrix, we consider the system s 0 � fλ1; λ2; �g; �δ; d;−αg

described in Eq. (A4), in which the first four elements of s 0 are the
same as the corresponding elements in �r. Because−λ2 < −λ1 < 0, the
first element of s 0 is now less than its second element, and the last two
elements of s 0 are obtained by interchanging the last two element of s.
It is shown in Ref. [5] that the exponential stability region in the

α − d plane for the system described by the ordered sextuple s� �
fλ2; λ1; �g; �δ;−α; dg is the same as that for the system described by

s 0 � fλ1; λ2; �g; �δ; d;−αg [see Eqs. (A3) and (A4)] [5].
But in Case 1 a procedure is already given to get the

explicit stability region of s� � fλ2; λ1; �g; �δ;−α; dg by using
Eqs. (A5–A10), because the first element of the s�, λ2, is greater than
its second element, λ1.
Thus, when −λ2 < −λ1 < 0 in the system described by

−λ2 < −λ1 < 0, we obtain the exponential stability region by 1)

considering first the system s� � fλ2; λ1; �g; �δ;−α; dg; 2) using
Eqs. (A5–A10) to obtain the region of exponential stability of system

s� in the α − d plane; 3) picking any point � �α; �d� that lies inside this
region of exponential stability; and 4) using α � �α and d � �d in the
system s 0.
The system described by �s 0 � fλ1; λ2; �g; �δ; �d;− �αg [or Eq. (A3)]

with λ2 > λ1 > 0 is then guaranteed to be exponentially stable. Note

that Eq. (A3) simply requires that the locations of �d and − �α in the

matrix DI in Eq. (A11) be exchanged. Thus, for the gyroscopically

stabilized system �r � fλ1; λ2; �g; �δg with −λ2 < −λ1 < 0, the system�
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is exponentially stable for any ��α; �d� belonging to the region of
exponential stability in the α − d plane obtained by using

Eqs. (A5–A10) for the system denoted s� � fλ2; λ1; �g; �δ;−α; dg;
the gyroscopically stabilized system �r � fλ1; λ2; �g; �δg that has−λ2 <
−λ1 < 0 is thereby rendered exponentially stable.
Case 3: This case is not used in the paper.
From Eqs. (A11) and (A12), dissipative damping d is provided to

that degree of freedom for which the negative eigenvalue of the
potential matrix is the smallest.

Appendix B: Necessary and Sufficient Condition for
Pairing 2n Real Numbers in n Pairs so the Numbers in

Each Individual Pair are Different

Result 3 deals with pairing 2n negative eigenvalues of the unstable
potential matrix Λ into n pairs so that each pair has different eigen-
values in it. Here the more general problem of pairing a set of 2n real
numbers tomaken pairs so that each pair has different numbers in it is
considered.
Consider 2n real numbers, n, of which k are distinct. Call these

distinct numbers

a1; a2; : : : ak (A13)

Let the multiplicity of �a2�ai be mi; i � 1; 2; : : : ; k, so thatP
k
p�1 mp � 2n. With no loss of generality, the set of these k distinct

numbers can be ordered so that m1 ≥ m2 ≥ · · ·≥ mk. Our aim is to
create n pairs of numbers from these 2n numbers so that each pair has
different numbers in it. Note that the number a1 has multiplicity m1,
and thismultiplicitym1 is not exceeded by themultiplicities of any of
the other distinct numbers a2; a3; : : : ak.
We next present three examples as a prelude to the results

obtained below.
Example 1:n � 5. The 2n � 10 numbers are, say, 5, 5, 5, 5, 5, 7, 7,

8, 8, 3.
Here, a1 � 5;a2 � 7;a3 � 8;a4 � 3; m1 � 5; m2 � 2; m3 � 2;

m4 � 1. Note that m1 � n � 5. A pairing of these numbers into 5
pairs, with each pair containing different numbers is [5, 7], [5, 7], [5,

Fig. A1 Exponential stability region for system s � fλ1; λ2; �g; �δ;
−α; δg, when −λ1 < −λ2 < 0.
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8], [5, 8], [5, 3]. Such a pairing can be carried out in exactly n −
m1 � 1 � 1 (easy) step, because the number 5 is simply distributed
among each of the 5 pairs. This pairing can be rewritten so that each
pair has its smallest number as its first element: [5, 7], [5, 7], [5, 8], [5,
8], [3, 5] (see Result 2). The pairing is unique; no other pairing exists
besides this one. □

Example 2:n � 5. The 2n � 10 numbers are, say, 5, 5, 5, 7, 7, 7, 8,
8, 1, 3.
Here, a1 � 5; a2 � 7; a3 � 8; a4 � 1; a5 � 3; m1 � 3; m2 � 3;

m3 � 2; m4 � 1; m5 � 1. Note thatm1 < n. A pairing of these num-
bers into 5 pairs, so that each pair contains different numbers is [1, 3],
[7, 8], [5, 7], [5, 7], [5, 8]. Such a pairing can be obtained systematically
by a process that takes exactly n −m1 � 1 � 3 successive steps. The
steps to get such a pairing are specified in the sufficiency proof of
Result 1 below. Step 1 generates the pair [1, 3]; step 2, the pair [7, 8];
and, step 3 simultaneously generates the last three pairs.
There are, of course, other pairings, such as:
[5, 1], [8, 5], [3, 7], [5, 7], [8, 7]; and [1, 8], [3, 7], [5, 7], [5, 7],

[5, 8].
As before, the first pairing above can be reorganized so that the first

element of each pair is less that its second (see Result 2). □

Example 3:n � 5. The 2n � 10 numbers are, say, 5, 5, 5, 5, 5, 5, 5,
8, 8, 3.
Here a1 � 7; a2 � 8; a3 � 3; m1 � 7; m2 � 2; m3 � 1, and

m1 > n. One cannot create a pairing of these numbers so that there
are five pairs in which each pair contains different numbers (see
Result A1 below). Thus, every pairing has one ormore pairs that have
identical numbers in them.
A pairing like [5, 8], [5, 8], [5, 3], [5, 5], [5, 5] gives the minimum

number of pairs that have two identical numbers in them. In this case,
this minimum number is 2. The procedure to get such a pairing is
provided in Result A2. Note that here, m1 � 7 � n� r, where
r � 2. Result A2 in this Appendix says that in any pairing, the
minimum number of pairs with identical numbers in them is r, which
in this case is 2. □

Result A1: The necessary and sufficient condition for each of the n
pairs formed from the 2n numbers described above to contain differ-
ent numbers in them is that

m1 ≤ n (A14)

Proof:
1) Necessity: If a1 has multiplicity m1 > n � n� r; 1 ≤ r ≤ n,

then
P

k
p�2 mp � n − r. By first making pairs in which these n − r

numbers are each paired with, n − r pairs that each have different
numbers in them are created. This leaves n� r − �n − r� � 2r
remaining a1’s that need to be paired, and we therefore get r more
pairs that each contain �a1; a1�. If instead, any pairs that contain
different numbers are made from among the n − r numbers for which
mp; p > 1, then there are more than 2ra1’s left for pairing, and again
there would be at least one pair containing two a1’s.
Alternatively, if m1 > N then

P
k
p�2 mp < n, and this would mean

that one pair must contain two a1’s.
2) Sufficiency†: When m1 ≤ n, a systematic process is developed

of pairing the 2n numbers into N pairs each of which has different
numbers in it. The proof gives a constructive way to produce such a
pairing in n −m1 � 1 steps.
When m1 � n, place an a1 in each of the n pairs. This yields the

desired, unique pairing in a single step (Example 1 above).
When m1 < n (Example 2), then

P
k
p�2 mp > n, and therefore

there must be at least two distinct indices i; j > 1 with mi > 0 and
mj > 0. Form a pair �ai; aj�. This is the first step in the process of

generating the pairing. There are n1 � 2n − 2 numbers at the end of
this first step that now remain to be paired appropriately.

Since m1 ≥ mp; p > 1, as long as the remaining numbers to be
paired exceed 2m1, there are always distinct indices i; j > 1 with
mi > 0 and mj > 0, so that a pair �ai; aj� can be created from them.

Hence, a series of such steps follow, each step contributing to a
desirable pairing, with the number of numbers, ns, left behind to be
paired at the end of each successive step continually reducing by 2.At
the end of n −m1 such steps, n −m1 pairs have been generated, each
pair having different numbers in it. The number of numbers that
remain to be paired now is nn−m1

� 2n − 2�n −m1� � 2m1. This set

of 2m1 numbers containsm1 number ofa1 ’s.A pairing inwhich ana1
is placed in each of the m1 pairs then simultaneously generates m1

pairs each of which have different numbers in them. The pairing
process therefore ends after n −m1 � 1 steps, thus yielding a desired
pairing of the 2n numbers. □

Thus, a set of 2n real numbers can be organized into n pairs such
that the numbers in each pair are different if and only if the multi-
plicity of every number in the set does not exceed half the number of
numbers,n, in the set. To the best of the author’s knowledge this result
is not available in this form in the mathematical literature.
Result A2:Whenm1 � n� r, 1 ≤ r ≤ n, the necessary and suffi-

cient condition in Result A1 is not met, so there will be some pairs in
every pairing that will contain the same numbers in them. For a given
value of r, let the number of such pairs that contain identical numbers
in them (in a pairing of the 2n numbers) be denoted by Ir. Then there
is a pairing that gives the minimum value of Ir, which is r. A
constructive proof that provides a systematic process to create such
a pairing with Ir � r is given.
Proof: Start the pairing process by first making pairs containing a1

with each of the n − r numbers that have multiplicities mp; p ≥ 1,

thereby forming n − r pairs each containing a1. Each of these n − r
pairs has different numbers in it. This leaves behind a total of n�
r − �n − r� � 2r number of a1 ’s, i.e., r pairs that are each �a1; a1�.
Any other pairing process that starts by first making any pairs �ai; aj�
that contain numbers with indices i; j > 1, has a larger number of
a1’s left over, and therefore more than r pairs that are each �a1; a1�.
Hence the minimum value of Ir equals r (Example 3). □
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